ПРИМЕНЕНИЕ МНОГОВРЕМЕННЫХ КОМПОЗИТОВ С КОГЕРЕНТНОСТЬЮ ДЛЯ ХАРАКТЕРИСТИКИ СЕЗОННОЙ ИЗМЕНЧИВОСТИ ПОВЕРХНОСТИ АРКТИЧЕСКОГО ОСТРОВА ВИЗЕ (РФФИ 18-05-60221)

Ширшова В.Ю., Балдина Е.А.

Остров Визе

Цель: изучить сезонную динамику острова Визе.

Задачи:

- Сформировать архив радиолокационных данных;
- автоматизировать и оптимизировать процесс обработки снимков;
- определить сезон свободного от снега острова;
- сформировать набор снимков для выбранного сезона за все доступные годы;
- ✓ выбрать тестовые участки на о.Визе;
- проанализировать изменение МТС композита в зависимости от территории.

Нам удалось найти всего 6 безоблачных оптических снимков Landsat; остров представлен в «теплый» период последних 3-х десятилетий.

Характеристики радиолокационных данных

Характеристика	Параметры
Диапазон съемки, ГГц/см	C (5,4/5,6)
Режим сьемки	Интерферометрический широкозахватный – IW
Уровень обработки	Уровень-1 комплексные радиолокационные данные (Single Look Complex – SLC), где каждый пиксель изображения представлен комплексным (I и Q) значением и, следовательно, содержит информацию об амплитуде и фазе.
Пространственный охват, км	250
Размер пиксела, м	5×20
Поляризация	Согласованная горизонтальная – ГГ(НН)
Полосы (swath)	IW 2
Подполосы (bursts)	4
Номер витка	137
Направление орбиты	Нисходящая
Временной охват	12.07.2016 - 19.09.2020

88

СНИМКОВ

Автоматизация и оптимизация обработки

- Скачивание и каталогизация используя библиотеки Python Sentinel-1 library;
- Графы обработки в SNAP:
- 1) Амплитудная обработка;

2) Интерферометрическая когерентность.

Анализ карт когерентности за 2019 года

2020 <u>Characteristics of the Small Arctic Island of Vise (Kara Sea) Basing on 2019 Multi-season Sentinel-1 Data</u> Авторы: <u>Baldina E.A., Shirshova V.Yu</u>, <u>Zhdanova E.Yu</u> European Polar Science Week - 26-30 October 2020, 26-30 октября 2020

Формирование МТС-изображения

Входные изображения

[R] первое по дате амплитудное изображение

[G] второе по дате амплитудное изображение

[В] когерентности фаз первого и второго снимков

Обнаружения изменений

Multitemporal Coherence (MTC) image

МТС-изображения для «тёплого» сезона 2016, 2018, 2019 и 2020 годов

Тестовые полигоны

- [3] антропогенный объект (строение)
- [4] около строений
- [5] около строений
- [6] пологоувалистая цокольная равнина

[9] – фрагмент у реки [10] — часть современной морской террасы

[11] – часть цокольной морской террасе

[12] – озеро

- [1] 1ая часть косы на современной морской террасе

- [2] 2ая часть косы на современной морской террасе
- [7] растительность
- [8] современная морская терраса

Графики распределения значений амплитуды первого снимка по тестовым полигонам

Графики распределения значений амплитуды второго снимка по тестовым полигонам

Графики распределения значений когерентности по тестовым полигонам

Выводы

Были проанализированы 12 тестовых полигонов, различающихся визуально и расположенных в разных частях острова, предположительно с разными свойствами поверхности. Для каждого полигона были построены графики распределения значений амплитуды и когерентности на все летние периоды.

- По каждому из выбранных участков характер распределения средних значений амплитуд и когерентностей сохраняется из года в год для свободного от снега сезона.
- Полученные изображения подтвердили, что в 2016-2020 гг. на поверхности острова снег с середины июля до конца августа отсутствовал практически полностью.
- У тестовых участков имеются близкие, по характеру распределения значений на графиках, объекты, что позволит нам в перспективе выделить более общие группы.

Литература

- 1. Бритти Ф., Джентиле В., Кантемиров Ю.И. и др. Новый продукт МТС, рассчитываемый по данным COSMO-SkyMed // Геоматика. 2012. №1, с. 46-51.Hellwich, O. SAR interferometry: Principles, processing, and perspectives / Olaf Hallwich // Technische Universität München. 1999. Р. 109–120
- Балдина Е. А., Ширшова В. Ю. Изображения когерентности для характеристики сезонной изменчивости поверхности арктического острова Визе // Цифровая география : материалы Всероссийской научно-практической конференции с международным участием в 2 томах. Т. 1: Цифровые и геоинформационные технологии в изучении природных процессов, экологии, природопользовании и гидрометеорологии. — Т. 1. — Пермь: Пермь, 2020. — С. 13–16.
- Ширшова В. Ю. Мониторинг оседаний земной поверхности в урбанизированных районахс помощью спутниковой радиолокационной интерферометрии (на примере г. Санкт-Петербург) //Геодезия, картография, геоинформатика и кадастры. Наука и образование. – 2019. – С. 60-65.
- 4. Copernicus Programme [https://scihub.copernicus.eu/dhus]